
A real time executive system for manned spaceflight

by J. L. JOHNSTONE
International Business Machines Corporation
Houston, Texas

INTRODUCTION
The Real Time Executive Control System discussed
in this paper was the foundation for the applications
programs developed in support of NASA's Gemini
and early Apollo missions. Services provided by
the Executive included dynamic storage management
and allocation, two-level priority multiprogramming,
real time data control and routing, real time error
recovery, dynamic statistical monitoring, debugging
facilities, and the program linkages and services that
facilitated modular and independent applications
system design. 'While a selection of these services
may be available in other systems, the Executive de­
sign differs from other real time systems by these
characteristics:

• Modularity - The Executive design permitted
the addition of new services and facilities based
on equipment changes or applications require­
ments with no impact on the previously provided
services and facilities.

• Simplicity - Only a minimal instruction in Ex­
ecutive services was necessary before applica­
tions programmers could construct programs that
operated in a complicated real time environment.

• Versatility - Executive could be used in the
simplest simulated real time environment for the
debugging of one applic~tions program or the
support of the most demanding real time missions.

• Generality - Executive was non-applications
oriented; i.e., it operated equally well in a real
time Gemini mission, an astronaut training ses­
sion, or in a non-real time environment using
simulated input from tapes.

• Invulnerable - The Executive was virtually un­
stoppable in real time; a feature vital for manned
spaceflight.

The executive environment

TheRTCC

A brief introduction to the Real Time Computer
Complex (RTCC) is necessary before proceeding to

any discussion of the Executive Control System.
The RTCC is a functional part of the Mission Control
Center at NASA's Manned Spacecraft Center in
Houston, The RTCC's missions during spaceflights
or training sessions are to:

• take spacecraft tracking and status data being
received from NASA's global communication
network and process it for display to flight con­
trollers stationed in the Mission Control Room
and the computer complex;

• compute and then forward antennae-aiming
directions to tracking and communications net­
works all over the world so they can begin to
track the manned spacecraft as it approaches;

• send calculated navigation and other infor­
mation to the computer aboard the spacecraft;
and

• simulate the data that network sites and space
vehicles would generate during an actual mission
so ,that personnel can be trained and equipment
can be checked and readied.

To perform these missions, each of five IBM
7094-II's was assigned a different role, and the RTCC
was engineered so that these roles could be ex­
changed at any moment. This unified set of computers
allowed NASA to run either two practice missions at
the same time, or a practice mission and an actual
mission at the same time. Figure 1 gives a dramatic
demonstration of the five systems at work in the latter
configuration. In the mission configuration,' network
data flows into the RTCC from one of the communi­
cations processors at the Manned Spacecraft Center
and is sent to the Mission Operational Computer
and the Dynamic Standby Computer by a switching
device called the System Selector Unit. In the simu­
lation and training exercise, a nearby Gemini space­
craft trainer is in a closed loop system with one of the .
two identical Mission Operational Control Rool1}s
(MOCR). The other MOCR is being used for the
mission. One simulation computer contains a system
which is generating simulated network data; the other
computer is used as an operational computer. The

215

From the collection of the Computer History Museum (www.computerhistory.org)

216 Fall Joint Computer Conference, 1967

Trainer

Control
Room

(MOCR)

SIMULATION

7094-11 7094-11
Subsystem Subsystem

A B

Communications
Processor .---...

C
P

DISPLAY SYSTEM
(MOCR-RTCC)

Ground
Radar

MISSION

7094-11 7094-11
Subsystem Subsystem

D E

DISPLAY 1
SYSTEM C. IJ

(MOCR-R CC)

Communications I ~ I I ~I
~
MOCR

Spacecra't ~
Communication

Figure 1-RTCC data flow-simultaneous simulation and mission

fifth computer is a standby computer for both exer­
cises; however, it is not idle but is processing a single­
computer debugging exercise for checkout of a future
mission or simulation system.

Although all three of the functions being performed
in the R TCC are different, a single Executive is per­
forming the control system functions for each.

The computer system

Each of the IBM 7094-11 computer systems (Fig­
ure 2) in the RTCC has 65.K primary memory, directly
addressable through automatic relocation hardware.
Each system has 524K words' of Large Capacity
Storage (IBM 2361) which is used as extremely high­
speed buffer storage for programs and data. Programs
are buffered between main memory and the Large
Core Storage (sometimes termed "core file" or
"COFIL") and placed in main memory wherever
space is dynamically allocatable. A protect feature
permits areas of storage to be protected from illegal
storing operations. Tape drives are attached to stand­
ard data channels A and B. In addition, a card reader
and printer are attached to channel A (not shown).
The Direct Data Connection (IBM 7286) on channel
C provides a rapid demand-response interface to the
digital display (D/TV) television system. Access to

large storage areas at a high data rate is provided by
the use of the Large Capacity Storage on channel D.
Real time acceptance and transmission of large
amounts of data and control information are accom­
plished through the use of the IBM 7281-11 Data
Communications Channel (DCC) on channel F. At)
the RTCC, the DCC has 13 subchannels designated
either input or output. Both the Direct Data Con­
nection and Data communications Channel interface
with the equipment and data networks serviced by
the RTCC. via the System Selector Unit (Figures 1
and 2).

65K Word A
Main Memory

c

2361
Lg. Capacity

Storage
524K Words

Figure 2- RTCC 7094-11 computer system

I
N
T
E
R
F
A
C
E

From the collection of the Computer History Museum (www.computerhistory.org)

A Real Time Executive System for Manned Spaceflight 217

As was shown in Figure 1, the SSU permits the in­
dividual computer subsystems to be configured either
singly, or in combination, to perform any of the
various mission, simulation, program testing, or
equipment testing functions of the RTCC. It is de­
signed to process the inputs and outputs of up to six
RTCC computers. The System Selector Unit makes
switching connections between computers and their
inputs and outputs and routes data accordingly. The
SSU's routing assignments are made by plugboards.

The preceding paragraphs have discussed the Ex­
ecutive environment-the RTCC and its IBM 7094-11
computer in which the Executive performed the real
time computer control functions from Gemini IV to
XII and Apollo 201, 202, and 203.

The real time system design

What is executive?

We have placed Executive in an environment
geared to real time operation. But, to enter into any
discussion of real time, one must first define his ver­
sion of real time; for there are probably as many
definitions of real time as there are real time systems.
To understand the Executive real time system design,
one must realize that the response time for the NASA
mission application must be an increment sufficiently
small to guarantee positive control of a manned space­
flight. At the RTCC, the usual time frame (or incre­
ment) in which data is received and presented to
NASA Flight Controllers is considerably less than
a second. Appreciating the response time required for
the real time Executive, we can now turn to a general
description of Executive.

General description

Executive is a collective term for those routines
which perform the support functions for the applica­
tions programs at the RTCC. Executive has two gen­
eral responsibilities in this capacity: (1) to serve as an
interface between applications programs and the
RTCC input/output devices and communications
lines, (2) to control the execution of and communica­
tions between the application programs. Executive is
a non-applications oriented system; i.e., it supports
equally w~1I all the RTCC systems: the Gemini or
Apollo Mission system, the Simulation Checkout and
Training System (SCATS), the Dynamic Network
Data Generation system (DNDG), the Ground Sup­
port Simulation Computer system (GSSC)~ or the
Operational Readiness and Confidence Testing sys­
tem (ORACT). The application programmers who
design programs for these various Executive sup-

ported systems code routines in assembly language
or FORTRAN to perform mathematical computa­
tions, interpret input data, or form output data. The
programmers are relatively uninformed as to how
Executive works .internally in performing its respon­
sibilities. All that is required of the programmer to use
Executive is a basic knowledge of the communication
mechanisms with Executive and what he is to expect
in the way of input from Executive.

System modularity

The majority of the application system's situations
call for processing logic programs which can be seg­
mented into controlling logic and a series of con­
trolled processing elements. The former programs are
designated supervisors, and the latter are termed
processors (see Figure 3). Supervisors are multi­
element programs which control processors and treat

XTRANS OF
SUPERVISOR

SUPERVISOR
PROGRAM

(ALWAYS THE
CALLER)

XTRANS OF
PROCESSOR

PROCESSOR
PROGRAM

(ALWAYS THf
CALLED)

Figure 3 - Supervisor and processor

them as closed subroutines. Processors differ from
traditional subroutines in that no processor" can call
another processor. A processor can only execute and
return control to a supervisor; usually, the super­
visor that called it. Some processors are general in
nature, as in the case of certain mathematical opera­
tions. Processors of this type can be shared by super­
visors. Processors receive no input data from Execu­
tive. Supervisors receive and supply the processors
with the data needed for the processor's execution.

Supervisors and processors are relocatable units;
i.e., they are dynamically buffered" from static storage
on the Large Core Storage (LCS) to core by Execu­
tive when their logic is needed. The origin of a super­
visor or processor in the 7094 core is at an address
which is a multiple of 256. This address, termed base
register, is set by Executive into the relocation regis­
ter prior to execution of the processor or supervisor.
Although every supervisor and processor is assembled
with addresses relative to zero, the base address
(contents of relocation register) and the offset (gen-

From the collection of the Computer History Museum (www.computerhistory.org)

218 Fall Joint Computer Conference, 1967

erated by the program at assembly time)'are summed
in the hardware for specification of actual memory
addresses. Address protection is also performed in
the hardware; the upper and lower bounds of a super­
visor or processor in core are set into the protect
registers by Executive when the element is brought
into core. If the processor or supervisor references a
memory address outside these bounds, a protection
interrupt occurs. Certain "protected" instructions
also'cause an interrupt.

Although the Executive is primarily a core resident
monitor existing in the lower 13K of the 65K core
memory on the 7094, it too has about a dozen func­
tional programs in the form of supervisors and pro­
cessors that it buffers in and out of core as needed.
As a comparison, the Gemini Mission System con­
tains about twenty supervisors for centralization of
flight/vehicle control logic and for supervision of data
processing and mathematical computation. Nearly
250 processors are callable by the supervisors.

Standard argument area

Every supervisor or processor contains a ten-word
table, called XTRANS (see Figure 3 and Figure 4.1).
When any program requires processing by another
program, the "calling" program fills its own XTRANS
with whatever data the "calied" program needs to
interpret the request.

For example, in a program used to compute square
roots, an XTRANS convention would be established
by the program. All other programs requiring square
roots would follow the convention. This convention
could be: when the square root program receives con­
trol, it will calculate the square root of the quantity
contained in the first cell of XTRANS. This square
root program also would specify that the third word of
XTRANS will always be set to zero (Figure 4.2), un­
less. some error occurs in the square root calculations
(Figure 4.3). This simple example could be compli­
cated slightly by changing the program to a generalized
root extractor. In this case, the root extractor pro­
gram might define the first word of XTRANS to con­
tain the argument, the second word to contain the
power, the third to return an error code or zero, and
the fourth to contain the absolute answer.1

Once a supervisor or processor (program) defines
its input and output XTRANS, that program's ser­
vices are available to any programs requiring them.
When one program (usually a supervis'or) calls another
program (usually a processor), Executive moves the
contents of the caller's XTRANS to the XTRANS of
the called program. When the called program com­
pletes and returns control to Executive, Executive

moves the contents of the completed program's
XTRANS back into the XTRANS of the caller, as
shown in Figure 5.

Standard control interface

lhe Executive provides a standard interface which
is used to pass control between application programs
(supervisors or processors). By using this interface,
the Executive solves such problems as: allocating a
program to main memory prior to execution, executing
programs according to their priority in the system,
and multiprogramming the asynchronous flow of
many paths of logic. (See Multiprogramming Aspects
below.)

The responsibility of determining how the Execu­
tive should pass control from program to program
rests with the programmer by use of the CALL state­
ment. The CALL statement requests a service from
the Executive, while the arguments dictate how the
service should be performed.

The mechanism of a CALL statement is to enter a
specialized Executive routine in the resident nucleus,
provide the routine with arguments supplied in the
CALL statement, and have Executive execute accord­
ing to the definition of the service and the supplied
arguments.

To reach the resident Executive routine to perform
the service requested by the CALL statement, a
subroutine, which was attached to the supervisor or
processor (element) at assembly time, is first entered.
(Each Executive service has its own subroutine.) This
subroutine simply places a certain code in a Store-and­
Trap (STR) instruction, and then executes the in­
struction. The executing of the STR causes an inter­
rupt (trap) in the 7094. The Executive fields the trap,
interprets the code, and transfers control to the
specialized routine designated by the code.

Multiprogramming aspects

As noted in the Introduction, the Executive is a
multiprogramming system; i.e., it permits many in­
dependent paths of logic to proceed asynchronously
and is able to switch control of the CPU (Central
Processing Unit) from one path to another, depending
on the priority of a supervisor or processor and its
availability for a particular path. The priority of the
supervisors and processors is determined by the order
of its entry in the Executive priority table. This entry
not only establishes the element's priority but reflects
the general status of the element at all times by giving
the following indications:

• Is currently operating or idle.

From the collection of the Computer History Museum (www.computerhistory.org)

I
I
I
\

I

I

~ XTRANS (1)

XTRANS-(2)

XTRANS (3)

A Real Time Executive System for Manned Spaceflight 219

Executive

~

XTRANS Table
10 Words

PROGRAMS

Figure 4. 1 Standard Argument Area: XTRANS

25.0 " X
T /

~ XTRANS (1)

5.0 ~
R /
A /

XTRANS (2)

O~
\

_\
\ \ ,

N I
S I

I
T

XTRANS (3)

-25.0

5.0~

1 ~ '\ .
\ \ ,

" X
T
R
A
N
S

\
\

\
I
I

I ~
I

A
B

\ I
\ I

I
J

/
~

T
A
B
L ~

SQUARE / / ,
I /

" / /
ROOT /

L \
E

,
SQUARE I /

"- 1/
""- ROOT '/

,/ ,/

PROGRAM PROGRAM

Figure 4.1 - Standard argument areas: XTRAN S

Figure 4.2-4.3 - Square ro.ot program

• Has one or more XTRANS waiting in a queue to
be sent to another supervisor or processor.

• Is being loaded into core.
• Is in core at location XXXXX, or is not in core.
• Is on LCS (program must be loaded from tape to

LCS to core for execution; programs generally

loaded into LCS from tape once per many core
loads).

• Is a supervisor or processor.
• Is privileged (runs with Executive ignoring pro­

tect interrupts).
• Is suppressed from running.

E

From the collection of the Computer History Museum (www.computerhistory.org)

220 Fall Joint Computer Conference, 1967

XTRANS OF
. - XTRANS OF

CAllER f+---- CAllED

Calling V Called

Program
~--- Program

......

" " "

1
",

EXECUTIVE SUPPORT

Figure 5 -Executive and XTRANS

The order of the entries in the priority table is
established by the applications programmers through
a macro at nucleus assembly time. During execution,
Executive scans the priority table from the top each
time a status change occurs. When Executive finds a
program ready for execution, the scan stops, and that
program is given control.

A supervisor further inhances multiprogramming in
that it consists of one or more programming elements,
called functions. Each function has its own XTRANS
area and may operate independently; in addition, all
functions share a single copy of a permanent data area
kept for each supervisor in a special buffer called
XTPERM. (See Figure 6.1.) XTPERM is permanent
since the Executive preserves the contents of the
table when the main core storage occupied by a super­
visor must be made available for other uses. When the
supervisor again receives control, the supervisor's
XTPERM is exactly as the supervisor last left it. Pro­
cessors have no XTPERM but many have tem­
porary work space while executing. The size of
XTPERM" is established by the programmer to fit
his needs for permanent data. There are probably no
two supervisor XTPERM's the same size in the
RTCC systems.

The second level of the two-level mUltiprogramming
structure discussed in the Introduction of the paper is
found in the functions of supervisors. Functions have
an internal priority that determines which function is
to receive control when two or more functions of a
supervisor compete for control.

The function's design is based on the concept that
a small package of functions (a supervisor) could
effectively generate a number of parallel logic paths,
and that multiprogramming will occur almost without

SUPERVISOR

XTRANS XTRANS XTRANS

Function A Function B Function C

F F F
U U U
N N N
C C C
T T T
I I I
0 0 0
N N N

A B C

XTPERM For
All Functions

Figure 6.1 - Three-function supervisor

the programmer being aware of it. With a number of
more-or-Iess independent logic paths operating
asynchronously, the Executive can maximize the
effective utilization of the CPU.

The supervisor function can call a processor several
different ways. The classical method is to call a pro­
cessor as a subroutine (see Figure 6.2). When the pro­
cessor completes its task, ~t returns control to the
function at the next instruction after the call. The
function is ~ut of operation, so to speak, until the
processor completes.

XTRANS
.... -----t~,

F
U
N
C
T
I
o
N

XTPERM

" '" XTRANS

PROCESSOR

Figure 6.2 - Function of supervisor calling processor

From the collection of the Computer History Museum (www.computerhistory.org)

A Real Time Executive System for Manned Spaceflight 221

Anotner approach permits the supervisor function
to "send" a call to the processor so that the func­
tion does not give up control. Consequently, for calls
that are sent, a function may call a number of pro­
cessor (see Figure 6.3). In this method, a function

may initiate a number of parallel operations. Further­
more, sending calls provides another control option.
The supervisor function, in sending a call, can permit
the processor to determine whether a return is to be
made or not.

ueue for Queue for

PROl #1 PRO} #2

XTRANS XTRANS

PROC #1 PROC #2

XTPERM Returns No
XTRANS Return

to FUNC 1 End Logic

Figure 6.3 -Calls sent to processors

If no return is to be made, the processor represents
an "orphan" task in mUltiprogramming that simply
executes and completes the task entirely. Thi~ is a
fairly typical operation where processors update
D/TV displays and no return to a supervisor function
is. expected, that is, unless something unusual is un­
covered in the processor's execution. If the processor
returns, it must return to the start of the function
specified by the arguments in a calling sequence of the
original calling function. The function returned to may
even be a function of a different supervisor. Therefore,
the processor is effecting a transfer of control without
knowing where this control is going.

Finally, functions of the same or different super­
visors communicate by calls that transfer the
XTRANS of the calling functions into the queue for
the called function. If the calling function has the
higher priority, control remains with that calling
function.

Real time processing

Basically, we have placed the Executive in lower
65K core and stated that it performs allocation of
supervisors and processors into main core storage
from the LCS (more on allocation later in the paper)
when a requirement for the supervisor and processor
is known.

We have shown the supervisor (with its functions)
and the processor giving request to the Executive
for certain services. Now we turn to the major re­
quirement for a supervisor or processor to be brought
into operation. That requirement is the receipt of real
time data.

Real time data receipt

In Figure 7 we find a processor in operation when a
data channel trap (or interrupt) is received from the
7281 DCC (channel F). What has happened is that

From the collection of the Computer History Museum (www.computerhistory.org)

222 Fall Joint Computer Conference, 1967

D -'co_re fi I e
C Displays/Switchover
B Tapes

Routing Logic is Shown

Chan.
Chan.
Chan.
Chan. A _T_a~p_e~s/P~r_in_t_e~rf_C_a_r_d_r_e_a_d_er ________ ~

t 'r ~Ir
Executive

Chan. F
·Comm."

lines
~

Save machin. e
~-----~:. conditions r-------

&
DCC

Time Type of tra~p~ ____________ O_u_tP_u...,t

tData + (7281) time
chan. Store data in

buffer pool

"
Clean-up last
output

Log data

~ STOR~ Save data • ROUTE in core
Unqueue and
output next
request

Queue

• input
logic

Processor

Data trap on
chan. F

file

---.......... + ... 4----
Scan priority (Sequencer)

XTRANS

Save buffer
for traps

I
I

,
Log data

Figure 7 - Trap control logic

data is now being placed in a buffer in lower core by
the hardware. (Each of the DCC input subchannels
has an addressed buffer in lower core.) The Execu­
tive receives control from the processor when the
interrupt occurs and saves those registers and ad­
dresses that will permit return to the processor with­
out change to the conditions existing before the in­
terrupt occurred. Executive takes the data that has
been placed in the input subchannel buffer and places

it in' a main core buffer pool for it to be logged onto
an output tape. The other process that Executive per­
forms on the data is termed routing and is covered in
the next section. Now that Executive has received
control via the data channel interrupt, it has an
opportunity to scan the priority table to find the
highest priority element (supervisor or processor)
with a work queue waiting for it. The element found
in the scan is then entered.

From the collection of the Computer History Museum (www.computerhistory.org)

A Real Time Executive System for Manned Spaceflight 223

There are, of course, other Data Channel Inter­
rupts, as shown in Figure 7, for channels A, B, C,
andD.

Routing

The RTCC computers must interface with other
computer installations and man/machine devices.
Additionally, the RTCC computers must keep in step
with Greenwich Mean Time (GMT) so results will
be maintained in real time and will be synchronized
with computing efforts elsewhere. The Executive
routing feature manages the input from the communi­
cations lines (DCC) and routes data and time (GMT)
to the proper functions and processors.

The routing logic is part of Executive; however,
Executive makes no original decisions as to the des­
tination of input. Routing information (directives)
for time and data is supplied to Executive by the
application programs. This information is stored in
routing tables associated withDCC input subchan­
nels. The user must activate and deactivate the
directives by chaining.

When data arrives in the system, the data identifi­
cation (ID) is compared to all possible ID's of data
that might arrive over that subchanneL When the data
ID matches an ID stored in a chained routing table,
the routing table information is used to queue the data
to an input function or processor, to store the data
until a future time, or to discard the data because they
are not needed.

When time arrives in the system, the current time
(G MT) is compared to all routing tables which are
used to direct queues depending on time. Routing will
generate a queue to all functions and processors for
which the request for time has been met.

Time signal routing

One type of routing is time·routing. For instance,
suppose a supervisor has to produce display output
every second. The supervisor would inform the
Executive that the supervisor requires control every
second. The Executive would file this request in a
routing directive for future reference. (See Figure 8.)

Every second thereafter, the Executive would
notice, while scanning its time routing directives, the
name of this supervisor listed as requiring a call every
second. The Executive would create an XTRANS for
the supervisor and would, in effect, call its type; i.e.,
time, and the current time. The type code would dis­
tinguish this particular XTRAN S from any other
types of XTRANS the supervisor may receive. (It
should be noted that supervisors may call upon this
supervisor with other type codes in XTRANS.)

...... -- -
Routing .

Directive
Time to
Super 1

-" ~

.,
/

/

Executive
Creates XTRANS

From Routing
Directive

XTRANS
Ready for
Super 1

////~
XTRANS of Super 1

Super 1

~

Figure 8 - Routing of time

"

Resident
Nucleus

Buffer
Space

It is particularly important to note that the super­
visor need tell Executive only once that repetitive
calls are required each second. The Executive will
generate these calls every second, indefinitely, until
the routing directive is modified or cancelled.

After the XTRAN S is created, the Executive would
attempt to give this XTRANS to the supervisor so
the supervisor can begin processing. Frequently, a
supervisor or processor cannot immediately receive
the latest XTRANS because:

a. The supervisor or processor is not in main core.
b. The supervisor or processor is busy doing some­

thing else.
c. More important work, i.e., some other super-

visor or processor has to be done first.
These problems are avoided, or at. least deferred, by.
inserting the XTRANS into a queue for the supervisor
involved. Every XTRANS, given to or created by
Executive, enters a queue for the program that is to
process the request. The queue is ordered chronologi­
cally; the earliest request is always at the top of the
queue. When the program involved is available in core
and has the highest priority, the request le.aves the
queue immediately. Otherwise, requests wait in the
queue for their turn. Each ti~e a program completes
processing of one request, the program is available for
the next request in the queue (see Figure 9).

Real time data routing

The Real Time routing in Executive brings real time
data to the application programs. The data routing

From the collection of the Computer History Museum (www.computerhistory.org)

224 Fall Joint Computer Conference, 1967

Executive Space

r

1st & Last
XTRANS

For Proc 1

2nd & Last

1st XTRANS
for

Super 1

Buffer Space

Figure 9-Queues ofXTRANS

Queue
for

Proc 1

Queue
for

Super 1

process is similar to the routing of timing signals.
The application program specifies a routing directive
for data. This routing directive is composed of two
parts: the first gives Executive the criteria to identify
the particular data the program requires, and the
second part of the routing directive tells Executive
what to do with the data that satisfy these criteria.

There are basically two options for applications
programmers in routed data; direct routing, and store­
mode routine. (See Figures 10 and 11.)

Direct mode routing

RTCC has few variable length messages. Messages
of a given type generally have a constant size. Some
types of real time data messages are small enough to
fit within an XTRANS. For these messages, the pro­
grammer can specify direct mode routing. When a data
channel interrupt occurs, Executive simply creates an
XTRANS table, places the data into the XTRANS,
and places the XTRAN S into the queue for the pro­
gram named in the routing directive. When the pro­
gram receives the XTRANS, the data are then ready
for processing.

If the data are too large for the XTRANS~' the Ex­
ecutive places the data into a buffer in lower core and
places information in the XTRANS that describes the
location of the data in the buffer. Using the informa­
tion provided in the XTRANS, the program obtains

RT
Data
Buffer

Routing
Directive
Data For
Super 1

" Points to
Data in Exec"

/"
/

Real
Time
Data

/
/

/

/

XTRANS
For

Super 1

S
o
M

Figure 10- Direct mode data routing

E
o
M

the message by executing a CALL statement to re­
quest the Executive Real Time Input/Output Control
System (R TI OCS) to move the message into the pro­
gram's area.

The direct mode of routing (as demonstrated in
Figure 10) is generally most effective for the small,
non-repetitive real time data inputs.

Store mode routing

For cyclic real time data applications, processing
usually consists of two phases: data collection, and
data processing (see Figure 11). The data collection
process can be processed entirely by the Executive.
The programmer defines a routing directive that in­
structs the Executive to store the selected data into
a data table on the LCS (data tables are termed
Z-tables). The programmer also creates, separately,
a routing directive that causes Executive to generate
a periodic XTRANS as a function of time. When the

From the collection of the Computer History Museum (www.computerhistory.org)

A Real Time Executive System for Manned Spaceflight 225

(1) Moves Data ta ZT ABLE
('2) Te lis ~per 1 When

Cycle Starts

Routi~
Directive
Time for
Super 1
Routing

Directive
Data Into
ZTRTIN

Figure 11 - Store mode routing

program receives this XTRANS, it requests RTIOCS
to read the collected real time data from the Z-table
into a designated area of the program for processing.

The major elements of executive

We have placed Executive in the Real Time sys­
tem and shown to a limited extent how it provides
the support and control necessary to sequence the
execution of the various supervisors, functions, and
processors through their request and through the
receipt of real time data. We have spoken of Execu­
tive in general terms and definitions; now, we can
turn to a brief description of some of the major ele­
ments that give Executive its structure.

Executive linkage

Executive linkage with supervisor/processors is
effected through library routines appended to super­
visors/processors at assembly time as the result of
CALL statements within the supervisors/processors
and associated service routit:tes within Executive. As
has been shown pr~viously, when an Executive
capability is called by a supervisor/processor, the ap­
propriate library routine in the supervisor/processor
sets up and executes an STR instruction that contains
a numerical code identifying the type of call. Execu­
tion of the STR instruction causes control to be passed
to Executive under hardware control. Executive
references the .code in the STR instruction to deter-

mine the type of call and then passes control to the
associated Executive service routine.

Executive sequencer

The Executive Sequencer consists of those routines
within Executive which service the real time system
by:

a. Interpreting Central Processing U~it (CPU)
traps which occur from the execution of an STR
instruction within a relocated element.

b. Servicing floating point and protect CPU traps.
c. Assigning control to the highest priority element

which has work outstanding.
d. Saving and restoring machine conditions when a

data channel trap or CPU trap occurs.
e. Interpreting requests for transferring control

between the elements of the system.

Real time input/output control system

The purpose of the Real Time Input/Output Con­
trol System (RTIOCS) within the Executive is to
provide a simple (from the programmer's standpoint),
flexible communication link between the supervisors
and processors and the various input/output media
available in the RTCC (no "Raw I/O" is allowed out­
side the RTIOCS). The RTIOCS consist of a series
of integrated routines which perform all necessary
input and output functions to the following devices
and storage media employed within the RTCC: Tapes
(Channels A and B), 7286-11 5I2K core file (Chan­
nel D), 7281-11 Data Communications Channel
(DCC, Channel F) which consist of 13 subchannels
connected to such devices as plotters on the output
side and real time data receivers on the input side,
the Digital/TV System (Channel C), 65K primary
main core memory, printer and card reader.

The basic framework of the RTIOCS, from the
user's standpoint, is a statement CALL I*GETT or
I*PUTT (* = "R" if the call is made by a processor
and "U" if made by a supervisor) and a series of three
to five arguments showing the action to be taken. A
typical call might be: CALL IRGETT (ZXAMPL,
MYBUFR, NBRWDS, LOCINB, BLKNUM). This
translates to: from data file ZXAMPL, starting at
LOCINB (a symbol containing an integer) in
BLKNUM (a symbol specifying a block number if
this is batch data) transfer NBRWDS (a symbol
which contains the number of words) into MYBUFR
(a symbol for a buffer area, normally within the calling
processor). The data file name termed Z-table name
(in this example, ZXAMPL) is a symbolic name of a
four-word table (File Control Block) in Executive
which defines the data file (its location, its type, jts

From the collection of the Computer History Museum (www.computerhistory.org)

226 Fall Joint Computer Conference, 1967

size, and other information pertinent to the particular
device that is the data file). Data files may be on tape,
LCS, main core, etc.

Figure 13 gives an example of RTIOCS servicing
a request for I/O from a user. The same type CALL
service logic using the STR instruction· that was dis­
cussed earlier in this paper is used for I/O request.

Dee servicer

The DCC Servicer processes all 7281-11 DCC sub­
channel traps. These traps may be caused by both
the input and output subchannels. The DCC Ser­
vicer moves the data from the cells in lower core in
which the hardware placed the input data into the
Executive Buffer Pool, sets UP information for the
Executive logging routines to log the data, and sends
a request to Routing to route the data.

Dynamic main memory and auxiliary storage
allocation

It was expected that the Geqlini systems would
change from mission to mission and would grow to
exceed the capacity of the computer main memory.
Since this change and growth could not be contained,
the necessary flexibility was built into. Executive to
permit such change and growth. Part of the flexibility
is in the design of the storage allocation routines of
Executive. No permanent storage location is assigned
to any problem program. Storage is allocated on de­
mand and in the quantity necessary to accommodate
the particular program.

Two distinct levels of storage allocation are used.
The first, allocation of main memory, is essential to
every run. It provides for the allocation of areas of
memory to required relocatable supervisors and pro­
cessors and uses the Executive RTIOCS capability
to load the programs into memory from the LCS (see
Figure 12).

The second, LCS allocation from magnetic tape, is
necessary only when there are more relocatable pro­
grams than can be accommodated ·concurrently in the
LCS. It provides for the allocation of areas in the
LCS to relocatable programs (processors only) ac­
cording to both actual and user-anticipated require­
ments. It also supervises the transmission of the pro­
grams from magnetic tape to the LCS.

When a request for a supervisor or processor is
made, the Executive Sequencer det~rmines if it is in
main memory. If it is not, Sequencer makes an explicit
request for the program by transferring to the Execu­
tive allocation routines. If the program is available
in the LCS, the main memory allocation routine
attempts to' allocate memory for it. If the program is

not in the LCS, the LCS allocation program is queued
to bring the needed program from magnetic tape to the
LCS, after which memory allocation will be re­
attempted.

Once main memory has been allocated for a pro­
gram, the Real Time Input/Output Control System
(RTIOCS) reads the program from LCS into main
memory. Control is then returned to Sequencer. When
no main memory can be allocated for a program due to
relative priority, activity status, and length considera­
tions, the request for allocation is retained so that it
may be re-attempted later.

LCS allocation is initiated in response to actual
requirements for programs to execute in main memory
or in response to user calls that specify which pro­
grams will be placed and held in the LCS in antici­
pation of actual requirements.

I nitializing the real time system

The final element in a discussion of the Executive
is Initialization. Executive initialization provides
user options for the Executive nucleus to execute in
several modes and in various hardware configurations.
Initialization occurs prior to entering Executive and
prior to starting a real time or simulated real time
operation. The initialization . options permit distinc­
tions between real time or simulated time, real input
data or simulated data, and actual I/O devices or
simulated replacements. The general scope of initial­
ization includes:

• Establishing initial hardware conditions
• Establishing parameters and initial conditions for

storage allocation
• Ensuring proper linkages between certain real

time programs
• Assigning tape drives
• Loading initial data into data files on the LCS

(Z-tables)
• Creating the Executive buffer pool
• Establishing debug request tables.
Prior to entering into the discussion of Initializa­

tion, it is essential that we give the two steps the user
must take before his supervisor or processor is in an
application system that is being initialized. The first
step is to accomplish unit testing of his supervisor/
processor and the second is to create the application
system tape.

Job shop simulator

Since· all the Executive services are provided via
the CALL statement, a simulator of the real time en­
vironment was easily provided under the IBM 7094
IBJOB system. This capability permits testing of a

From the collection of the Computer History Museum (www.computerhistory.org)

A Real Time Executive System for Manned Spaceflight 227

7094 MOD II
LCS (corefile)

Executive: ~ Do core allocation

~
Data in

~ Process Z-tables
Store Request I/O to
and obtain logic \ Trap

~ \
\

Suppress new ~ \
Queue new logic (not in core)

\ All supervisors
logic \

+
New logic

No

in core ,r

~ Priority scan (Sequencer)
I

t
Enter the highest
priority function
or processor

L.....- Supervisor requests for
contro I services

\
\

\
\

\

Vt V
N-r-----

and processors

\
\

\ ..

V New
logic

r----

LCS = Large Core
Storage -
512K CCF!LE

Figure 12 - Program control flow

single processor or supervisor, or a supervisor and
several processors, in a batched-job system. Some of
the more exotic features of Executive's multiprogram­
ming facility cannot be simulated adequately in a
sequential (essentially IBJOB) environment. But for
most unit, string, or subsystem testing, the Job
Shop Simulator is very effective. The fact that pro­
cessing is sequential often makes it possible to identify
bugs before the environment changes completely (a

constant problem in multiprogramming debugging). In
addition, the capability of conducting significant
debugging in a batch environment greatly economizes
the computer time required to deliver checked out
systems.

Creating the real time systems tape

When unit testing has been completed with the Job
Shop Simulator, the programs can move unchanged

From the collection of the Computer History Museum (www.computerhistory.org)

228 Fall Joint Computer Conference, 1967

LCS {corefile}
7094 MOD II

Executive:

Process
Store
and
Trap

I/O channel

~

busy !
No

Yes Drive
I/O Interpret

I/O request , Queue the +
I/O request

Requested
data

Suppress
logic

Priority scan (Sequencef) r
Enter another unit of
logic or wait for I/O

Processor requests
for I/O services

(buffer)

Supervisors
and

Processors

Figure 13-Real time IOCS

into the real time system testing environment. The
first step is to create a real time system tape.

The Executive has been described as a single-com­
puter program serving many real time applications
systems. The user must define his application system
to the Executive by building tables inside the Execu­
tive. This is accomplished by macro statements that
the user inserts into· a speCial Executive card deck.
When this deck is assembled, the user's section of
Executive is created. These macros basically define:

a. The supervisor/processors of the application
system and their relative priority (the priority
table)

b. The file control blocks (for Z-tables)
c. The initial routing directives.
During the building of the system tape, the user's

decks are combined with the Executive code to pro­
duce the "Executive nucleus. In the process, all of
the symbolic names (program names, Z-table names,
etc.) are translated into indexes. The translation

From the collection of the Computer History Museum (www.computerhistory.org)

A Real Time Executive System for Manned Spaceflight 229

process simply trades pre-execution time to save
translation in real time. The nucleus Executive is
written on the real time system tape along with copies
of the remainder of the non-resident Executive and all
of the user's application system programs.

Real or simulated time

The first significant Initialization option is whether
or not the user requires an internal/external clock syn­
chronization. Unless external devices (including other
computers and/or people) are involved, synchronized
time is rarely used. U nsynchronized or simulated time
simply uses an internal clock that never runs when the
computer is idle. When idle time occurs, this clock
is spaced forward to the" next clock interrupt. For
example, this feature permits an orbit of 90 minutes
to be completed in about 10 minutes of elapsed time.
No changes are required in any applications system
program. In fact, there is no wayan application
program can tell that a simulated clock is being used.

When running in the simulated mode, the user can
specify that any or all of the real time input devices
(subchannels) are to be simulated with canned data
from tape or, in some cases, the card reader. Any of
the real time input devices can be simulated while the
remainder accept actual data, or are unused, in any
combination. Furthermore, the real time output
devices can be used or the outputs can be diverted
to the LCS by requesting on-line for Initialization to
modify the file control block.

Debug request

The RTCC version of the IBJOB debugging sys­
tem that permits core snapshot dumps, heavily used in
job shop runs, is also available when running a real
time system in the simulation mode. Since the debug­
ging package operates with the simulated clock turned
off, the applications programs cannot recognize that
the debugging operations are taking place.

When a real time run is specified, initialization
automatically removes any debug requests.

Error halt or error recovery mode

The normal inclination of the real time Executive
is to continue processing, regardless of any errors
that may occur. Some error recovery action is in­
stituted in hope that the condition was only transitory.
This is the sensible approach to real time support. But
in debugging a system, especially a highly dynamic
mUltiprogramming system, evidence should be saved
as soon as the error is discovered. Consequently,
another initialization option permits the system to

run under either the error halt or the error recovery
mode. Once this system is started in the error halt
mode, the mode may be changed to error recovery and
back, at the setting of a sense switch. Once the sys­
tem is started in the error recovery mode, the mode
may not be reset.

Real time statistics

Another initialization option permits the user to
accumulate statistics during a real time run. The
accumulation of statistics operates only in the syn­
chronized real time mode and generally requires about
five percent of the CPU in overhead. (The RTCC
experience has been that the five percent of the
CPU is not the difference between success and
failure in a real time run.)

Once the initializatipn option has been set, the
Statistics Gathering System (SGS) may be activated
or deactivated dynamically from the Manual Entry
Device (MED) or by the card reader used to simulate
the MEDs. Statistics are accumulated in three cate­
gories:

a. Internal Executive Logic - frequency of use,
average execution time, core allocation attempts
and successes, etc.

b. Supervisor and Processor- number of uses,
average "execution time, number of uses per time
loaded into core from the LCS, number of Execu­
tive CALL's, etc.

c. Total CPU Utilization-amount of time in
execution, in waiting on I/O, and idle.

SGS, originally conceived and "implemented to
support the extensive GPSS (Gordon General Pur­
pose System Simulator) modeling activities at RTCC,
has proved useful to many of the applications pro­
grammers in analysis of their systems.

OperationalJeatures oj executive

Real time run synopsis

When the run terminates, the user has the option of:
• A synopsis that consists of a formatted presen­

tation of all the significant Executive tables: the
state of the priority table, the state of all the
processors and supervisors, the chains of
XTRAN S in the queues for all the. processors
and supervisors, etc.

• An octal dump with assembly language opera­
tional codes.

• A full symbolic dump.
If any debugging system snapshots were taken,

these are formatted in the post-execution processing.
Programmers generally take the synopsis and 'an octal
dump.

From the collection of the Computer History Museum (www.computerhistory.org)

230 Fall Joint Computer Conference, 1967

Real time internal control mode and generalized
on-line display capability

The 'Real Time Internal Control Mode (RTICM)
of Executive gives the user of Executive more con­
trol of the multitude of initialization and dynamic
options, while giving the user the capability to exer­
cise these options remotely. Most of the Executive
options, prior to RTICM, required the user to set
and reset the sense switches and keys of the 7094
console. RTICM permits all options to be punched
into cards and allows selective dynamic use of these
cards to be governed by the processing itself. The on­
line display capability allows a user to select dy­
namically, via the Manual Entry Devices, information
from main core on the LCS to be displayed on the
television system. The information can be selected
symbolically, saved, and recalled by name.

Reliability

During the Gemini and Apollo missions, the Execu­
tive is keyed to keeping the real time system up and
running no matter what adverse conditions are en­
countered. In doing this, the Executive has provided
an elaborate Error Recovery System to intercept pro­
gram errors, hardware generated errors, and data
generated errors. When one of these errors are en­
countered, Executive quickly examines the situation
and produces an appropriate .recovery method to
enable the real time processing to continue. If the
error encountered is of such a nature that recovery
is either impractical or unfeasible, the Executive
will recommend Switchover to a standby system. If

necessary, the 65,000 words of core memory and the
524,000 words of COFIL memory can be trans­
ferred from this standby computer to a new operation­
al computer by the Executive RESTART logic in less
than five minutes. In the worst case, real time pro­
cessing is never delayed more than three minutes. If
an I/O device fails in any manner, Executive pro­
vides time-out logic to ensure that failure on one
device will not interfere with the remainder of pro­
cessing in the real time system. If tapes fail or become
full, Executive provides tape switching logic.

CONCLUSION

Some of the basic ideas for the Executive were de­
veloped in the Real Time Mercury Monitor for
NASA's Project Mercury and, in turn, some of the
ideas conceived in the Executive design are being used
in the development of the Real Time Operating Sys­
tem/360 for Project Apollo. It has been found in
these endeavors that real time system development is
an evolving creature, for the predominant require­
ment in its development is that its design must be
able to evolve as the environment in which it will
operate is understood.2

REFERENCES

J H MUELLER
The philosophy of the RTCC control proRrams
IBM Real Time Systems Seminar Proceedings 1966

2 R L HOFFMAN
Managing the design, development, and implementation of

large scale generalized real time systems
IBM Real Time Systems Seminar Proceedings 1966

From the collection of the Computer History Museum (www.computerhistory.org)

