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Abstract The outline of the paper is as follow. Digital control aspects
are introduced in Section 2. Definitions and characteristics
of real-time systems are described in Section 3. Here, some
common mistakes and misconceptions by developing real-
time control software are also discussed. Section 4 treats the
implementation of real-time controllers and Section 5 sum-
marizes some important specifications for the implementa-
tion of real-time control systems as well as some well-known
commercial products. Finally, conclusions are drawn in
Section 6. 

The literature about real-time systems presents digital
control or computer controlled systems as one of its most
important practical application field. However, it is very
difficult to find in these textbooks real-time control aspects.
It seems to be more natural that these applications should
be treated as part of digital control courses. In spite of
that, control system literature rarely includes extensively
the real-time subject and it does normally not pay attention
to real-time aspects beyond algorithms and choice of sam-
pling times. The aim of this paper is to highlight important
issues about real-time systems that should be taken into
account at the moment to implement digital control.

2 Computer controlled systems

The introduction of digital computers in the control loop
has allowed developing more flexible control systems
including higher-level functions and advanced algorithms.
Furthermore, most current complex control systems could
not be implemented without the application of digital hard-
ware. However, the simple sequence sensing–control–actua-
tion for the classical feedback control becomes more com-
plex as well. Nowadays, this sequence can be supple-
mented as follow: sensing–data acquisition–control law
calculation–actuation–data base update. Figure 1 shows
an overview of such control systems.

1 Introduction

The implementation of digital control systems and real-time
systems belong together and they should be connected
more or less later in the control engineering curricula.
However, it is difficult to find this connection in the
standard textbooks, where the real-time implementation is
almost always ignored. For example, a very good introduc-
tion into computer controlled systems can be found in [1],
but no orientation to the real-time software is given there.
Mechanisation of control algorithms are given e.g. in [9].
In [8], hardware and software for digital control systems
are described shortly. On the other hand, in [3] the real-
time system design is treated from the optic of control
engineering without to consider implementation aspects.
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In general, real-time issues are gradually becoming “trans-
parent” to the control engineering student. This transparency
has been considerably increased in the last years with the
advent of software tools like Matlab/Simulink ([24]) with
its RTW (Real Time Workshop), the RTWT (Real Time
Windows Target) and products from other companies like
WinCon from Quanser ([25]) and ECP Executive from ECP
Systems ([26]). They certainly do the implementation of 
real-time experiments easier and save much time, but on
the other hand they put more distance regarding to the real-
life problems, which can emerge during the real-time imple-
mentation of control systems. Hence, control concepts
become today easier to be exemplified, but control engineer-
ing students can lose the real dimension about designing
real-time control systems, particularly when they have to
deal with time-critical applications.

This paper attempts to give an introduction to the implemen-
tation of real-time control systems, where characteristics
of real-time systems and digital control issues are taking to-
gether into account.

Figure 1. Overview of a computer controlled system



Thus, the control system now contains not only wired com-
ponents but also algorithms, which must be programmed,
i.e. software is now included in the control loop. This
leads to new aspects to take into account by designing
control systems:

Our plant is so slow that real time is actually no

problem. A slow control system, which does not need
a fast computer, can require critical time constraints.
It is also possible that a control system does no need
any hard real-time requirements but it is not necessarily
a consequence of the slow plant.

1.Errors due to A/D and D/A conversion as well as due
to limited length word calculations. This subject is 
well treated in the literature (see for example [ ]).

It is not meaningful to talk about guarantying real-time
performance. It is true that occasionally time constraints
can be relaxed without introducing additional problems
in the control loop. This particularly applies to nice de-
signed laboratory experiments. However, this actually
depends on the application, and the time criticality
should be proved for each individual case. On the other
hand, real-time performance cannot be 100% guaranteed
while hardware and software failures cannot be avoided
at all. 
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2.Software developing is prone to errors. Thus, a new
concept has to be introduced to consider this aspect, the
verification, i.e. a mechanism to test if the software is 
doing exactly what it is expected. Here it is necessary
to remark that in general a high percent of errors in
digital control systems are caused by programming
mistakes. Hence, digital control projects need not
only control engineers but also engineers with skills in
software engineering and computer programming. We do not care about real time in our digital control

system and even though it works. This statement is
similar to the previous one. The problem here is that
you are not able to know when your system can fail.

3. Standard textbooks on digital control systems normally
assume that sampling is uniform, periodic and synchro-
nous. This leads to a case of “zero-time-execution” for 
the control law. However, that is not realistic since the
control algorithm also consumes some time producing a
control or feedback delay (control or feedback latency),
i.e. a delay between a sampling instant and the instant
at which a control-signal value is applied to the actuator.

Real-time programming is assembly coding, priority

interrupt programming and device driver writing. It 
is true that some code is still writing in assembler.
However, high programming languages like C, Ada
95, Modula 2 and Real-time Java are normally used 
to develop real-time software. Device driver program-
ming is necessary for real-time as well as non-real-
time systems but they should be provided by the oper-
ating system or by the device manufacturer. Interrupt
programming should be in principle avoided as much
as possible. This point is treated in Subsection 3.5.

If the controller design is based on a model and the
delay is constant and known, it could be helpful to use a
tool for the description of the inter-sample behaviour
(e.g. modified z-transform) in order to obtain a discrete-
time model more approximated to the real case. 

4.The computational time of control algorithms can
change from one sampling instant to other (e.g. hybrid
controller with controller switching mechanism, event
based controllers, adaptive controllers with on-line
parameter update, etc.). This variation in the delay is
called control jitter (according to the IEEE, jitter is “the
time-related abrupt, spurious variation in the duration
of any specified related interval”). Moreover, value
calculation for the control signal is usually carried out
using multitasking (Subsection 3.2) defining a set of
control tasks with respective priorities. Thus, a task can 
be pre-empted by higher priority tasks. In general, it
can be said that the control system is also affected by
several kind of jitter depending on context: sampling
jitter, control latency jitter, input jitter, output jitter, etc.

In the next Sections, an overview about real-time systems
and control systems will be given in order to clarify real-time
programming and its most important application.

3 Real-time systems: a short introduction 

Real-time computing is a vast field and therefore, a complete
discussion about that is outside the scope of this paper.
Therefore, only the most relevant aspects will be treated here.

3.1 Definitions and general aspects

It is possible to find in the literature several definitions for
real-time systems. Here, a definition that does not contradict
the definition given in the IEEE POSIX Standard (Portable
Operation System Interface for Computer Environments)
will be assumed

Finally, real-time issues are often ignored in the implemen-
tation of digital control systems. This is in part a conse-
quence of erroneous definitions and false interpretations.
Popular misconceptions from the control engineering
community about real-time systems are for example:

A real-time system is one in which the correctness of a

result not only depends on the logical correctness of

the calculation but also upon the time at which the

result is made available.The computer was connected to the plant by mean of

A/D and D/A converters in order to obtain the real-

time system. Analog plants should be connected to the
computer through A/D and D/A converters. This link
with the “real world” does not lead to a real-time
system. On the other hand, it is possible to find real-
time systems in complete digital contexts.

This definition emphasizes the notion that time is one of 
the most important entities of the system, and there are 
timing constraints associated with systems tasks. Such
tasks have normally to control or react to events that take 
places in the outside world, which are happening in “real 
time”. Thus, a real-time task must be able to keep up with
external events, with which it is concerned.



It should be noted here that real-time computing is not
equivalent to fast computing. Fast computing aims at getting
the results as quickly as possible, while real-time computing
aims at getting the results at a prescribed point of time within
defined time tolerances. Thus, a deadline (for this point of
time) can be associated with the task that has to satisfy this
timing constraint specifying either its start or completion time.

If the task has to meet the deadline, because otherwise it 
will cause fatal errors or undesirable consequences, the
task is called hard real-time task. On the contrary, if the
meeting of the deadline is desirable but not mandatory, the
task is said to be a soft real-time task. By extension, one
speaks about hard/soft time-constraints as well as hard/soft
deadlines.

3.2 Real-time operating systems (RTOS)

In order to implement multitasking real-time systems, two
approaches can be used: The first one consists in program-
ming by using concurrent real-time languages and the
second one is to use a sequential language and a real-time
operating system ([4]). There has been a long debate about
advantages and drawback of both approaches, which will not
be treated here. However, a very important point is that
real-time systems and real-time operating systems are not
equivalent concepts: A RTOS provides facilities, like
multitasking (i.e. concurrency or potential parallelism),
scheduling, intertask communication mechanism, etc., for
implementing real-time systems.

Old operating systems are characterised by the fact that each
task is a simple program running in its own memory space. 
In the last years, there has been a tendency to provide facili-
ties for creating several tasks within the same program to
have faster task switch, unrestricted access to shared memory
and to simplify the communication and synchronization.
Such tasks are commonly called threads. The most
important disadvantage of using threads consists in that the
memory is not protected between threads of the same
program. Figure 2 illustrates the difference between
multitasking and multithread systems.
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Figure 2. Multitasking and multithreading concepts

Together with parallelism, determinism is another important
property of RTOS. A RTOS is predictable if the time
necessary to acknowledge a request of an external event is
know in advance. The end point of this predictability
scale is called determinism, in sense that this time is
exactly known in advance. This concept should not be
confused with responsiveness, which is the time (after the
acknowledgement) elapsed till the request is attended.
Determinism and responsiveness make up the response time
to external events. This is also called system latency.

Modern RTOS include in general the following features: 
fast switch context, small size, preemptive scheduling based
on priorities, multitasking and multithreading, intertask com-
munication and synchronisation mechanisms (semaphores,

signals, events, shared memory, etc.), real-time timers, etc.
However, RTOS are similar to standard operating systems
from a structural point of view, since functional components
as interrupt handler, task manager, memory manager, I/O
subsystem and intertask communication are proper of both
kind of operating systems.

3.3 Real-time scheduling

The distinctive part of a RTOS is the task manager. It is 
composed by the Dispatcher and the Scheduler. The Dis-
patcher carries out the context switch, i.e. the parameter
saving for the outgoing task and the parameter loading for
the incoming task, and the CPU handing over to the task
that is becoming active.

The Scheduler has the function of selecting the task, which
will obtain the processor as next. This choice is given by
means of algorithms and this is the point where RTOS and
non-RTOS are mostly distinguished. Real-time systems need
special algorithms to schedule a set of tasks. This is a very
active area of research in computer science and many
algorithms have been proposed. In this paper, only the
most important uniprocessor scheduling algorithms for real-
time requirements will be presented. Fig. 3 presents an
overview about some well-known scheduling algorithms
(for details see e.g. [17], [12]).

Scheduling algorithms can be grouped in two classes: static
and dynamic algorithms. A static scheduling requires that 
the complete information about the scheduling problem
(number of tasks, deadlines, priorities, periods, etc.) is
known a priori. Thus, the scheduling problem is solved
before the schedule is executed. Such scheduler is also
called clairvoyant. If at run time the feasibility can be
determined and changes in the configuration may be carried
out, then the scheduling is said to be dynamic.

Static schedules must always be planed off-line. Dynamic
schedules can be planed either off-line if the complete
scheduling problem is known a priori but with an on-line
implementation, i.e. the configuration is changed at run
time, or on-line if the future is unknown or ignored. Advan-
tage of off-line scheduling is its determinism and the dis-
advantage its inflexibility. On the contrary, an on-line
scheduling is very flexible but poor in determinism. More-
over, an on-line scheduling does not perform well if the
system is overloaded. However, on-line scheduling is clearly
the only option in a system whole future workload is 
unpredictable.

The guarantee that all deadlines are met can be taken as 
measure of the effectiveness of a real-time scheduling algo-
rithm. If any deadline is not met, the system is said to be
overloaded. Liu and Layland ([13]) showed that the total

processor utilization for a set of n tasks given by

1
)min( ,

i

n
i

i i

C
U

D T
 (1)

can be used as schedulability test. C is the execution time,
D the deadline and T the task period. If the task is 
aperiodic or the deadline is smaller than the period, then
the deadline is used in the equation. presents a 
classification for the most well-known dynamic scheduling
algorithms for uniprocessor systems. In the following, the 

Figure 3



most popular algorithms for scheduling tasks with real-time
requirements will be shortly presented.
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Figure 3. Classification of uniprocessor scheduling
algorithms

Fixed-Priority Scheduling (FPS). In this approach, each 
task has a fixed static priority which is computed pre-run 
time. The runnable tasks are executed in the order deter-
mined by their priorities. If all tasks are periodic, a simple
priority assignment can be done according to the statement:
the shorter the period, the higher the priority. This approach
is known as Rate Monotonic Scheduling (RMS) and it was
proposed in [13]. The schedulability analysis for this algo-
rithm presumes that all tasks are pre-emptive, periodic with
deadlines equal to the period and independent (i.e. no task
precedence between tasks exists). In this case the total 
utilization has an upper bound given by

 (2)
1/

(2 1)
n

U n

This bound converges to 0.693 for n , to 0.88 when
the periods are uniform and to 1,00 only when the periods
are harmonics of the smallest period. Under the conditions
given above, it can be showed that the algorithm is
optimal among fixed priority policies (i.e. given a set of
tasks, RMS always produces a feasible schedule for this set,
if any other algorithm can do that). This approach is easy to
be implemented and if there are schedulability problems,
the first task to fail is the task with the longest period, i.e.
if the system becomes overloaded, deadlines are missed pre-
dictably. The most important drawbacks are its low utiliza-
tion (under 70%), the fixed priorities, which can lead to 
starvation and deadlocks, and the fact that all deadlines 
should be equal to the periods.

In order to get out of the last problem, the Deadline Mono-
tonic Scheduling (DMS) was proposed in [11]. They gener-
alized the RMS allowing deadlines less than periods,
where the fixed priority of a task is inversely proportional
to its deadline. 

Deadline-based Dynamic Scheduling. There are some dy-
namic scheduling algorithms which are based on assigning
priorities according to their deadline. The simplest algorithm
in this class is the Earliest Deadline First algorithm (EDF),
where the task with the earliest (shortest) deadline has the
highest priority. Thus, the resulting priorities are naturally
dynamic. This algorithm can be used for both dynamic and
static scheduling. However, absolute deadline are normally
computed at run time and hence the algorithm is presented 
as dynamic. This algorithm was also proposed in [ .
They also showed that if all task are periodic and preemp-

tive, then the algorithm is optimal and its utilization is U  1.
A disadvantage of this algorithm is that the execution time is
not taken into account in the priority assignment.

Another algorithm that is also optimal for scheduling preem-
tive tasks on one-processor system is the Maximum Laxity
First (MLF) algorithm ([6], also called Least Slack-time
First, (LSF) or Least Laxity First (LLF) algorithm). At any
time, the laxity (or slack) of a task with deadline is equal to

 execution timeLaxity deadline remaining . (3)

The MLF algorithm assigns priorities based on their laxities:
the smaller the laxity, the higher the priority. This algorithm
requires the knowledge of the current execution time, and
then laxity is essentially a measure of the flexibility available
for scheduling a task. Thus, MLF takes into consideration the
execution time of a task, and this is it advantage in front of
EDF. On the other hand, the execution time is normally not
known until the task complete and therefore estimation is
necessary. Because this estimation is used to schedule the
set of task, the resulting schedule can be incorrect. This is 
its most serious disadvantage.

The MLF algorithm also has a schedulable bound of 100% 
for all task sets. A problem with EDF as well as MLF is
that there is no way to predict which tasks will fail in
transient overboard situations. This has led to another algo-
rithm called Maximum Urgency First (MUF) algorithm
([19]), where an explicit description of urgency is assigned
to each task. This urgency is defined as a combination of
two fixed priorities, and a dynamic priority, which is
inversely proportional to the task laxity. One of the fixed
priorities, called task criticality has precedence over the
dynamic priority. The other fixed priority, called user
priority, has lower precedence than the dynamic priority.
The criticality helps on-line algorithms to distinguish more
important from less important tasks. Finally, it is necessary
to remark that all mentioned dynamic algorithms do not
remain optimal if pre-emption is not allowed or the system
has multiple processors.

If sporadic or aperiodic tasks must be scheduled, two algo-
rithms can be used: the Deferrable Server Algorithm (DSA) 
and the Sporadic Server Algorithm (SSA). However, only 
SSA conforms to the RMS schedulability analysis. 

3.4 Intertask Communication and Synchronisation

The intertask communication can be carried out as for 
non-RTOS by using mailbox, pipes and shared memory.

Synchronization is very important in real-time systems for
two reasons: (i) tasks may experience unpredictable delays
due to blocking on shared resources to which they require
exclusive access (e.g. A/D and D/A converters), and (ii) some
tasks should be executed depending on results of other tasks.

It can be shown that the addition of mutexes in real-time pro-
grams makes the general scheduling problem a non-pre-
dictable one ([14]). To solve this problem with an EDF algo-
rithm kernelized monitor protocol can be used and priority
ceiling protocol if the scheduling algorithm is RMS. 

3.5 Common programming mistakes

By programming real-time system, many typical mistakes
are often founded ([ ). Some of them are: 18]13]



Large or many if-then-else and/or case statements.
These statements introduce in the code many different
paths with varying length so that the code will also have
different execution time. This becomes more signifi-
cantly when the path is very long. Variable functions,
state machines, lookup tables should be used instead the
mentioned statements.

Delays implemented as empty/dummy loops. This leads
to inaccurately delays depending on the hardware.
RTOS timing mechanisms should be used here for
implementing exactly time delays.

Indiscriminate use of Interrupts. Interrupts affect seri-
ously the real-time predictability: They cannot be
scheduled, and they have always very high priorities.
Programs based on interrupt are very difficult to debug
and to analyse. Moreover, they operate in kernel
context.

There is a very popular myth, which says that interrupts
save CPU time and they guarantee the execution start of
a task. This can be true in small and simple micro-
processor based systems. However, it is not the case for 
complex real-time system, where non-preemptive peri-
odic tasks can provide similar latency with better pre-
dictability and CPU utilization.

Periodic polling threads should be used if it is possible.
Interrupt services routines should be programmed in
such a form that its only function is to signal an
aperiodic server.

Configuration information fixed using #define or similar
statements. Programmers frequently use #define state-
ments in their code to specify register addresses, limits
for arrays, and configuration constants. Although this
practice is common, it is undesirable because it prevents
on-the-fly software patches for emergency situations,
and it increases the difficulty of reusing the software in
other applications. Changes in the configuration require
that the entire application has to be recompiled.

Implementation based on a big single loop. One big
loop leads to the fact that the complete software exe-
cutes to the same rate. In order to assign different and
proper rates concurrent techniques for pre-emptive
RTOS should be used.

Use of message passing as primary intertask commu-

nication mechanism. Message passing reduces real-time
schedulability bound and it produces significant over-
head leading to many aperiodic servers instead of peri-
odic tasks. Moreover, deadlocks can appear in closed 
loops systems. Shared memory and proper synchroniza-
tion mechanisms to prevent deadlocks and priority 
inversion should be used.

To think that problems can be fixed magically. Pro-
gramming errors, which become seldom visible in the
debugging phase, can appear exactly at the time when
the application is running and it is not possible to
correct the mistake. It is necessary to find all mistake
causes before the software is released.

Do not analyse memory during the design. The amount
of memory in most real-time systems is limited. Fre-

quently, programmers have no idea about how much
memory a certain program or data structure uses. More-
over, they are normally wrong by an order of magnitude.
A memory analysis is quite simple with most of
today’s development environments.

Design without execution-time measurement. It is very
common to assume that the program is short enough
and the available time is sufficient. However, measuring
of execution time should be part of the standard testing 
in order to avoid surprises. Hence, the system should
be designed so that the code is measurable all time.

4 Computer implementation of control systems 

Building a real-time control system requires two stages in 
general: controller design and digital implementation. At 
controller design stage, normally a control performance
index is defined (because optimal control is normally
preferred to specify control performance requirements) and 
a controller is designed which optimise this index while 
maintaining stability and rejecting disturbances. SISO-
controllers in an imput/output approach, e.g. PID (Pro-
portional Integral Derivative), GMV (Generalized Minimum
Variance) GPC (Generalized Predictive Controller), pole
placement, etc., can be represented by the general equation

 (1)1 1 1( ) ( ) ( ) ( ) ( ) ( )P q u k T q r k Q q y k

where P, T, and Q are polynomials, u is the control signal,
r the reference signal and y the plant output. (Notice that 
for the PID controller T(q-1) = Q(q-1)). State Space controller
with observer are given in general by

ˆ( ) ( ) ( )r xk k ku K r K x  (2)

 (3)o oˆ ˆ( 1) [ ] ( ) [ ] ( ) (k k kx A K C x B K D u Ko )ky

where Ko is the observer gain. The controller is executed
cyclically according to the sampling time, whose value is 
assumed to be correctly chosen, i.e. satisfying not only the
condition given by the Shannon’s sampling theorem but
also achieving the desired performance (the control design is
normally based on a time-discrete model which also depend
on the sampling time). In order to satisfy the “zero-execution
time” requirement, it is desired that the new value for the
control signal be delivered as soon as possible.

At implementation stage, multiple control tasks should be
scheduled to run on microprocessors or microcontrollers.
All tasks should be scheduled with limited available comput-
ing resources. The chosen sampling time should take into
account the limited computation time provided by the hard-
ware. Thus, the computation time delay (control latency)
is always in conflict with the sampling time To. Depending
on the magnitude of  relative to To this conflict can be 
classified into either a delay (0 <  < To) or loss (To )
problem. Since the control latency is usually affected by
control jitter, delay and loss can occur alternately in the 
same system at different times. The loss of the control
signal u(k) is equivalent, to the case when the controller
computer fails to update its output during any one sampling
interval and u(k-1) is applied again. Because this could
occur randomly at any time, the failure to deliver a control



signal can be treated as a correlated random disturbance
u(k) at the input of the plant.

( ) ( )( )

( ) ( )
r rr y

y y

k d r ku k

k d y k

x 0C C

x 0
 (8)

The interaction between control performance and task sched-
uling has been investigated in [16]. Research results led to 
the conclusion that separated design produces suboptimal
performance. Hence, the digital control system design has to
be revisited in order to introduce considerations about
real-time computing. In [10] and [16], the task attribute 
assignment with respect to control performance was focused
on task period selection for a single task model of the con-
troller like the example shown in Figure 4 (Matlab syntaxes is 
used for simplicity).

where the matrices A, By, Br, Cy, Cr, dy and du are obtained
from some realization of

1
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and contains the controller parameters. Figure 5 illustrates a
possible implementation of this idea. 

Shared Memory
y = read_ADC(Ch#x);
ys = signal_conditioning_scaling(y);

r = signal_generator(Parameters);

u = [Cr –Cy]* xu + [dr 0;0 dy] * ry;
write_DAC(Ch#x, u);

Set_Event_Variable(1)
(wait function)

Scheduler

Task 1 (with maximum priority)

xu= Au * xu + Bu * ry;Reset_Event_Variable(2);

Set_Event_Variable(2)
(wait function)

Task 2 

ry = [r; ys];

Sampling time T

Task 2

Deadline
Task 2

Deadline Task 1
Task 1

y = read_ADC(Ch#1);
ys = signal_conditioning_scaling(y);

r = signal_generator(Parameters);
e = [(w-ys) e(2:length(e)];
u = u + q’ * e;

write_DAC(Ch#1, u);

Set_Event_Variable()
(wait function)

Scheduler

set highest priority;

Figure 5. I/O Controller implemented with two real-time
tasks

Space-state controllers naturally fit this task model (Figure
6). All these approaches are based on optimal control design.
In [15], the control performance is specified by rise time,
maximum overshoot, settling time and steady state error. The 
task scheduling was carried out by a heuristic approach.

Figure 4. Controller implemented with one real-time periodic
task

Here, in order for delivering the control signal u(k) as soon 
as possible one-step-ahead predictive controller can be used
in the form

 (4)
( 1) [ ( 1), ( ), , ( ), ( ), ,

ˆ( ), ( 1), ( ), , ( )]

u k f r k r k r k n u k

u k m y k y k y k n

where r(k+1) is assumed to be known and ˆ( 1y k ) is

calculated by a simple linear predictor given by

ˆ( 1) ( ) ( ) ( 1

( 1) ( 1)

y k y k y k y k

k k k k

)

)

)
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 (5) R

 (6)ˆ( 1) 2 ( ) ( 1y k y k y k Shared Memory

u, r, x, y, Ab, Bb, Kr, Kx

etc.

Set_Event_Variable(1)
(wait function) 

Scheduler

Task 1 (with maximum priority)

r = signal_generator(Parameters);
u = Kr * r - Kx * x;
write_DAC(Ch#x, u); 

eset_Event_Variable(2);

Sampling time T

Task 2

Deadline
Task 2

Deadline Task 1Task 1

Set_Event_Variable(2)
(wait function) 

Task 2 

y = read_ADC(Ch#x);
ys = signal_conditioning_scaling(y);
x = Ab * x + Bb * [u’ y’]’;Hence, the control task started first delivering u(k) (which

was calculated at time k-1), after this the remaining opera-
tions are carried out, i.e. read y(k) from A/D converter,
calculating  and then u(k+1). The disadvantage of
this approach is that the control signal is calculated based on
a prediction. This prediction can be however improved by
using a model of the plant but in this case, more execution
time is necessary.

ˆ( 1y k

Figure 6. Real-time implementation of a state-space
controller

A supervisor can be implemented as an independent task. 
A possible scheme is shown in Figure 7.

4.1 Some common mistakes in the implementation of

real-time control systems

In the laboratory, it can be frequently observed that control
engineering students commit some of following mistakes:

A second approach was proposed by [ ]. This is based on
the implementation of two periodic real-time tasks. The
first one calculates the control signal directly after reading
and conditioning y(k) and the second one updates the states 
after the control signal value was delivered. For the I/O
representation, eq. (1) can be implemented by using a 
realization in the form of a ladder structure given by

Overlook the anti-aliasing filter. Anti-aliasing filter is 
necessary to bind the highest signal frequency in order to
determine correctly the sampling time. The filter can be
dispensed with if the highest frequency of the signal is 
known and the sampler can be set accordingly.

 Implement the anti-aliasing filter in software (as digital
filter) after the sampling. This is a typical error commit-
ted by students. Because the filter is used to avoid 

( 1) ( ) ( )

( 1) ( ) ( )

r r r

y y

k k r k

k k y k

x x B 0A 0

x x 0 B0 A y

 (7)



This separation is not necessary for small systems, since 
hard real-time PC operating systems such QNX ([7]),
LynxOS and RT-Linux have solved the problem of deter-
ministic response of real-time tasks, which coexist together
with non-real-time tasks on the same computer. However, if
the project has some spread then the host/target architecture
brings more flexibility, order and computational power. An
additional advantage is that the real-time system will con-
tinue working still in the case that the host crashes, increas-
ing the reliability of the system. Requirements for a real-
time system could be:

Scheduler
Task 1 (with maximum Priority)

xu = A * xu + Br * ry;

Set_Event_Variable(2)
(wait function)

Task 2 

y = read_ADC(Ch#x);
ys = signal_conditioning_scaling(y);

r = signal_generator(Parameters);

u = [Cr –Cy]* xu + [dr 0;0 dy] * ry;

write_DAC(Ch#x, u);
Reset_Event_Variable(2);

ry = [r; ys]; 

Deadline
Task 2

Sampling Time (control)

Task 2 

Deadline
Task 1Task 1

Sampling Time (supervision)

Task 3

Deadline
Task 3

Set_Event_Variable(1)
(wait function)

Supervision();

Set_Event_Variable(2)
(wait function) 

Task 3 

Blocked by Task 1

Scheduler

Shared Memory

Preemptive Multitasking for hard real-time require-
ments. Multitasking and multithreading are necessary if 
e.g. there are many independent control loops. It is also 
necessary to implement supervisory control as well as 
adaptive control. Figure 7. Real-time implementation of a state-space

controller
Laboratory plants do not usually need hard real-time re-
sponse to obtain an acceptable performance for a simple
control loop. However, this property becomes essential if
the project includes research in the area of hybrid
dependable systems or the algorithms should be tested
for time-critical applications.

aliasing at the sampling stage, the filter must be situated
before the sampling and it has to be analogue.

Overlook the signal scaling. Controllers are normally
designed by using a model that is parameterized accord-
ing to physical or normalized units. Thus, sampled signal
have also to be converted to the corresponding units,
before they can be used for the control signal calculation.

POSIX compliance. Posix (Portable Operating System
Interface) is an IEEE standard for operating systems.
Norms 1003.1b, 1003.1d, 1003.1j specify requirements
and compatibilities for real-time systems. Posix compli-
ant software is easy to be ported.

Unnecessary implementation of continuous-time con-
trollers. Students frequently design a continuous-time
controller in Simulink and then they transfer the algo-
rithm to real-time target system using the Real Time
Workshop. The consequence is that the controller is 
implemented using a fixed-step solver for differential
equations (normally fourth-order Runge-Kutta) with a 
sampling time equal to the integration step. Thus, the real-
time task suffers an unnecessary overload. If it is possi-
ble, discrete-time controllers should be implemented.

Support for real-time scheduling. Several algorithms are
available for this task, e.g. RMS, EDF, MLF and MUF.

Small latency such that sampling times in the area of 1 
ms should be possible for several control loops.

Integration with Labview. Labview is a graphical pro-
gramming environment from National Instrument Inc.
that combines development with a powerful program-
ming language allowing 2-D and 3-D data presentation
and visualization.

Here it is important to remark that sometimes discrete-
time control systems perform poorer than continuous-
time ones and increasing the sampling rate does not
always lead to a performance improvement. Moreover,
some problems are caused by the properties of sam-
pling zeros of pulse transfer functions at high sampling
rates. In these cases, continuous-time control should be
applied and the above advice could be incorrect. This
clarifies the sense of the expression “if it is possible”.

The use of Matlab/Simulink/RTW should not be the
exclusive tool to implement real-time software but an 
additional facility. Therefore, a real-time operating
system with a develop environment to write software
is also needed.

The above stated requirements are very hart if the acquisi-
tion of ready-to-use products is wanted. For example,
although EDF, MLF and MUF are well-known scheduling
algorithms for real-time requisites, they are hardly to find in
commercial real-time operating systems. MLF and MUF are 
not implemented at all and EDF can be found in JBed ([20])
and RT-Linux ([2]). However, JBed is not Posix compliant,
the integration with Matlab/Simulink and LabView is not
available and only few CPUs and interface cards are sup-
ported. RT-Linux (or RTAI) could be a good choice if 
software drivers are available for the corresponding acquisi-
tion boards and the developers have enough experience
installing RT-Linux because this activity is very cumber-
some. A limited interface with Matlab/Simulink/RTW and 
Labview is available.

5 Real-time platform

Nowadays it is very difficult to choose a software/hardware
configuration for real-time experiments because there are
many manufacturers that offer a variety of well designed
systems. Thus, it is necessary to be careful at the moment
to define the specifications for such systems.

Today it is very common to use two computers in a host/
target configuration to implement real-time control systems.
The host is a computer without real-time requirements, in
which the develop environment, data visualization and
control panel in the form of a Graphic User Interface (GUI)
reside. The real-time system run on the target, which can be
a second computer or an embedded systems based on a
board with a DSP (Digital Signal Processor), a PowerPc or a 
Pentium family processor.

The first software specification (multitasking/multithreading)
excludes products like RTWT ([24]), WinCom ([25]) and



real-time systems based on DSP board, since they are very 
limited in this aspect. Most WindowsNT-based real-time sys-
tems are inadequate for system with hard deadlines and 
products like InTime (from RadiSys Co.) and Hyperkernel 
(from Nematron Co.) do not support Matlab/Simulink and 
Labview. The same is valid for LynxOS ([21]).  

6 Conclusions 

In this contribution, an introduction to real-time digital 
control from an educational point of view has been given. 
Some well-known misconceptions coming from the control 
system community were clarified and common mistakes 
in the programming and in the real-time control implement-
tation have been highlighted. The relevance of the real-
time implementation of the control system, particularly in 
case of time-critical application, can also be taken from 
the paper.  

Finally, the problem to find an adequate commercial real-
time operating system was pointed out by summarizing the 
experience collected in this field. 
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